4.7 Article

Quantifying Marine Sedimentary Carbon: A New Spatial Analysis Approach Using Seafloor Acoustics, Imagery, and Ground-Truthing Data in Scotland

期刊

FRONTIERS IN MARINE SCIENCE
卷 7, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2020.00588

关键词

organic carbon; sediment; multibeam; seabed mapping; carbon stocks; fjord

资金

  1. University of St Andrews
  2. MASTS pooling initiative (TheMarine Alliance for Science and Technology for Scotland)
  3. Scottish Funding Council [HR09011]
  4. Natural Environment Research Council/Biotechnology and Biological Sciences Research Council (NERC/BBSRC) [BB/M026620/1]
  5. BBSRC [BB/M026620/1] Funding Source: UKRI
  6. NERC [bgs06003] Funding Source: UKRI

向作者/读者索取更多资源

Marine sediments are important repositories of organic matter, effectively burying organic carbon (OC) over geological timescales thus providing a climate regulation service. However, the spatial distribution of this marine sedimentary OC store is not well constrained. In this study we leverage a high resolution multibeam echosounder (MBES) survey taken at Loch Creran, a model fjordic site on the west coast of Scotland, to develop a new methodology for predicting the distribution of OC in surface sediments. Using an integrated approach, we use MBES survey, video imagery and ground-truthing data to produce a high-resolution (2 x 2 m) map of surficial carbon and calculate a 10 cm stock. We find that the backscatter survey reliably uncovers a heterogeneous seabed and that OC correlates strongly with the MBES backscatter signal as a function of sediment composition. We estimate that there are approximately 12,346 +/- 2,677 t of OC held within the top 10 cm of mixed sediments across the MBES survey area (7.96 km(2); 60% of the total area), upscaled to 20,577 +/- 4,462 t of OC across Loch Creran (13.27 km(2)). Normalised by area, we find that fine sediments with small fractions of sand and gravel hold more OC than homogenous fine sediments. This initial work proposes a novel methodological approach to using high resolution MBES surveys to improve the spatial mapping of sedimentary carbon (C) and identification of C hotspots, enabling consideration of this resource in sedimentary carbon accounting, seabed management and climate mitigation strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据