4.7 Article

Current collectors for low resistance aqueous flexible printed supercapacitors

期刊

JOURNAL OF ENERGY STORAGE
卷 29, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2020.101384

关键词

Supercapacitors; Energy storage; Printed electronics; Current collector; Aluminium; Graphite

资金

  1. Academy of Finland [319041, 326408]
  2. Business Finland [40146/14]
  3. Academy of Finland Finnish Research Infrastructure (FIRI) [320019]
  4. Academy of Finland (AKA) [319041, 319041] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

In this paper we propose various current collector alternatives to be used in flexible supercapacitors with aqueous electrolyte when low equivalent series resistance (ESR) is required. The current collector material should be corrosion resistant when in contact with the saline electrolyte. Simultaneously it should have high electrical conductivity. In addition, environmental and cost aspects must be taken into account. We report supercapacitors with current collectors made of two different thicknesses of graphite foil (25 mu m and 150 mu m) and aluminium coated with graphite inks. These disposable and non-toxic supercapacitors show remarkable improvements in ESR compared with values obtained for similar components with current collectors made of graphite ink. When graphite foil or aluminium is used as current collector, the ESR can be decreased by more than 80 % compared to using graphite ink alone. Supercapacitors using a dense graphite protective layer on top of aluminium showed no sign of corrosion and their performance was not significantly reduced after ageing for 950 days. With graphite foils, comparable ESR values can be obtained as with aluminium. The graphite foil is an interesting alternative if metal materials should be avoided, e.g. to facilitate incineration of the supercapacitors together with regular household waste. Especially with non-porous graphite foil, we obtained properties suitable for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据