4.7 Review

HA coating on Mg alloys for biomedical applications: A review

期刊

JOURNAL OF MAGNESIUM AND ALLOYS
卷 8, 期 3, 页码 929-943

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.jma.2020.05.003

关键词

Magnesium alloys; Hydroxyapatite coating; Corrosion; Biodegradability; Biocompatibility

资金

  1. Australian Research Council (ARC) [DP170102557, FT160100252]
  2. Australian Research Council [FT160100252] Funding Source: Australian Research Council

向作者/读者索取更多资源

Magnesium (Mg) alloys are receiving increasing attention as biodegradable implant materials in recent years. However, their low corrosion resistance and fast degradation in the physiological environment remain challenges for a widespread application. Hydroxyapatite (HA) coating on Mg alloys can enhance their corrosion resistance, biocompatibility, and bioactivity of the Mg alloy substrates since the compositions of HA are similar to those of the hard tissue of natural bone. This review analyzes the challenges of Mg alloys for biomedical applications, the fundamental requirements for biodegradable metals, and the corrosion mechanisms of Mg alloys in the physiological environment. The benefits of HA coatings on Mg alloys, the most commonly used surface coating techniques and their advantages and limitations, and the in vitro and in vivo performance of Mg alloys with and without surface coatings are comprehensively elucidated. Multistep processes such as alkali treatment and then HA coating by electrochemical deposition on Mg alloys appear to be necessary to achieve a satisfactory surface coating on Mg alloys, which has been demonstrated to have the potential to improve the degrading behavior, bioactivity and biocompatibility. Multifunctional coatings are most effective in achieving safe and bioactive Mg alloy surfaces for promising biodegradable implant applications. (c) 2020 Published by Elsevier B.V. on behalf of Chongqing University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据