4.7 Article

Glucose Availability Alters Gene and Protein Expression of Several Newly Classified and Putative Solute Carriers in Mice Cortex Cell Culture andD. melanogaster

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fcell.2020.00579

关键词

solute carriers; major facilitator superfamily; transporters; glucose; primary cortex cultures; deprivation; starvation; D; melanogaster

资金

  1. Swedish Research Council [2016-01972]
  2. Swedish Brain Foundation [FO2018-0130]
  3. Swedish Society for Medical Research [201507]
  4. Novo Nordisk Foundation [34224]
  5. Ahlens Foundation [193027]
  6. Engkvist Foundation [20160614]
  7. Thurings Foundation for Metabolic Research
  8. Magnus Bergvall Foundation [201601754]
  9. Swedish Research Council [2016-01972] Funding Source: Swedish Research Council

向作者/读者索取更多资源

Many newly identified solute carriers (SLCs) and putative transporters have the possibility to be intricately involved in glucose metabolism. Here we show that many transporters of this type display a high degree of regulation at both mRNA and protein level following no or low glucose availability in mouse cortex cultures. We show that this is also the case inDrosophila melanogastersubjected to starvation or diets with different sugar content. Interestingly, re-introduction of glucose to media, or refeeding flies, normalized the gene expression of a number of the targets, indicating a fast and highly dynamic control. Our findings demonstrate high conservation of these transporters and how dependent both cell cultures and organisms are on gene and protein regulation during metabolic fluctuations. Several transporter genes were regulated simultaneously maybe to initiate alternative metabolic pathways as a response to low glucose levels, both in the cell cultures and inD. melanogaster.Our results display that newly identified SLCs of Major Facilitator Superfamily type, as well as the putative transporters included in our study, are regulated by glucose availability and could be involved in several cellular aspects dependent of glucose and/or its metabolites. Recently, a correlation between dysregulation of glucose in the central nervous system and numerous diseases such as obesity, type 2 diabetes mellitus as well as neurological disease such as Alzheimer's and Parkinson's diseases indicate a complex regulation and fine tuning of glucose levels in the brain. The fact that almost one third of transporters and transporter-related proteins remain orphans with unknown or contradictive substrate profile, location and function, pinpoint the need for further research about them to fully understand their mechanistic role and their impact on cellular metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据