4.7 Article

An Integrated Converter With Reduced Components for Electric Vehicles Utilizing Solar and Grid Power Sources

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TTE.2020.2998799

关键词

Batteries; Inductors; Switches; Pins; DC-DC power converters; Capacitors; Transportation; Bidirectional dc-dc converter solar PV system; electric vehicles (EVs); inductor voltage detection (IVD); power factor correction (PFC)

向作者/读者索取更多资源

A novel integrated converter for electric vehicles (EVs) is proposed in this article. For battery-charging operation, the proposed converter system enables a complementary deployment of the utility grid and a solar photovoltaic (PV) system. Since both sources (acting one at a time) utilize the same converter, the developed charging system, therefore, has a smaller number of components. In addition, an inductor voltage detection (IVD) technique has been incorporated to correct the power factor (PF) in continuous conduction mode (CCM), which eliminates the need for a current sensor for PF correction (PFC). The proposed system operates for all the modes required for an EV, e.g., charging, propulsion (PRN), and regenerative braking (RBG). In charging mode (with either grid or solar PV), the proposed system operates as an isolated secondary ended primary inductance converter (SEPIC) converter. In PRN and RBG modes, it operates as a boost converter and a buck converter, respectively. Details of all these modes are described in the article, along with the design of the components. In addition, results of simulation and experimental studies are presented for a 1-kW setup based on the proposed configuration. A comparison with other topologies shows the technoeconomic competence of the proposed system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据