4.7 Article

MEK activation modulates glycolysis and supports suppressive myeloid cells in TNBC

期刊

JCI INSIGHT
卷 5, 期 15, 页码 -

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/jci.insight.134290

关键词

-

资金

  1. Susan G. Komen Career Catalyst Research Grant [CCR14299052]
  2. Department of Defense Era of Hope Scholar Award [BC170037]
  3. NIH/National Cancer Institute [R00CA181491, 2P50CA098131]
  4. Vanderbilt-Ingram Cancer Center Support Grant [P30 CA68485]

向作者/读者索取更多资源

Triple-negative breast cancers (TNBCs) are heterogeneous and aggressive, with high mortality rates. TNBCs frequently respond to chemotherapy, yet many patients develop chemoresistance. The molecular basis and roles for tumor cell-stromal crosstalk in establishing chemoresistance are complex and largely unclear. Here we report molecular studies of paired TNBC patient-derived xenografts (PDXs) established before and after the development of chemoresistance. Interestingly, the chemoresistant model acquired a distinct KRAS(0619) mutation that activates K-Ras. The chemoresistant KRAS-mutant model showed gene expression and proteomic changes indicative of altered tumor cell metabolism. Specifically, KRAS-mutant PDXs exhibited increased redox ratios and decreased activation of AMPK, a protein involved in responding to metabolic homeostasis. Additionally, the chemoresistant model exhibited increased immunosuppression, including expression of CXCL1 and CXCL2, cytokines responsible for recruiting immunosuppressive leukocytes to tumors. Notably, chemoresistant KRAS-mutant tumors harbored increased numbers of granulocytic myeloid-derived suppressor cells (gMDSCs). Interestingly, previously established Ras/MAPK-associated gene expression signatures correlated with myeloid/neutrophil-recruiting CXCL1/2 expression and negatively with T cell-recruiting chemokines (CXCL9/10/11) across patients with TNBC, even in the absence of KRAS mutations. MEK inhibition induced tumor suppression in mice while reversing metabolic and immunosuppressive phenotypes, including chemokine production and gMDSC tumor recruitment in the chemoresistant KRAS-mutant tumors. These results suggest that Ras/MAPK pathway inhibitors may be effective in some breast cancer patients to reverse Ras/MAPK-driven tumor metabolism and immunosuppression, particularly in the setting of chemoresistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据