4.3 Article

Photonic Chern insulators made of gyromagnetic hyperbolic metamaterials

期刊

PHYSICAL REVIEW MATERIALS
卷 4, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.4.065202

关键词

-

资金

  1. Ministry of Science and Technology
  2. National Center for Theoretical Sciences
  3. Far Eastern Y. Z. Hsu Science and Technology Memorial Foundation in Taiwan

向作者/读者索取更多资源

Controlling light propagation using artificial photonic crystals and electromagnetic metamaterials is an important topic in the vibrant field of photonics. Notably, chiral edge states on the surface or at the interface of photonic Chern insulators can be used to make reflection-free waveguides. Here, by both theoretical analysis and electromagnetic simulations, we demonstrate that gyromagnetic hyperbolic metamaterials (GHM) are photonic Chern insulators with superior properties. As a novel mechanism, the simultaneous occurrence of the hyperbolic and gyromagnetic effects in these metamaterials is shown to open the large topological band gaps with a gap Chern number of one. Importantly, the GHM Chern insulators possess nonradiative chiral edge modes on their surfaces, and thus allow us to fabricate unidirectional waveguides without cladding metals which generally incur considerable Ohmic loss. Furthermore, the photonic edge states in the proposed Chern insulators are robust against disorder on a wide range of length scales, in strong contrast to crystalline topological insulators, and the light flow direction on the surface of the Chern insulators can be easily flipped by switching the direction of an applied magnetic field. Fascinatingly, we find that negative refraction of the topological surface wave occurs at the boundary between the GHMs with the opposite signs of gyromagnetic parameters. Finally, we show that compared with other photonic topological materials such as chiral hyperbolic materials, the present GHM Chern insulators can be much easier to fabricate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据