4.7 Article

Supplementary LED Interlighting Improves Yield and Precocity of Greenhouse Tomatoes in the Mediterranean

期刊

AGRONOMY-BASEL
卷 10, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy10071002

关键词

Solanum lycopersicum; light emitting diodes (LEDs); photosynthetic photon flux density (PPFD); supplemental interlighting; yield; greenhouse cultivation

向作者/读者索取更多资源

In Northern Europe, the use of light-emitting diodes (LEDs) is widely adopted in protected horticulture, enabling to enhance plant growth by ensuring needed radiative fluxes throughout seasons. Contrarily, the use of artificial lighting in Mediterranean greenhouse still finds limited applications. In this study, the effects of supplemental LED interlighting on vegetative development, fruit growth, yield, and fruit quality of high-wire tomato plants (Solanum lycopersicumL. cv. 'Siranzo') during spring and summer season were addressed in a hydroponic greenhouse in Italy. Plants were either grown under natural solar radiation (control), or by adding supplemental LED interlighting. LED treatment featured red (R) and blue (B) light (RB ratio of 3) and a photosynthetic photon flux density of 170 mu mol m(-2)s(-1)for 16 h d(-1). Supplemental LED interlighting enhanced yield as a result of increased fruit weight and dimension. While no effects on soluble solids content and fruit color at harvesting were observed, supplemental LED interlighting accelerated ripening by one week in spring and two weeks in summer and this also resulted in increased cumulated productivity (+16%) as compared to control treatment. Overall, supplemental LED interlighting can represent a feasible technology for tomato greenhouse production also in the Mediterranean region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据