4.5 Article

Alexander Calder'sHalf-Circle, Quarter-Circle, and Sphere(1932): a complex history of repainting unraveled

期刊

HERITAGE SCIENCE
卷 8, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s40494-020-00419-7

关键词

Alexander Calder; Motorized sculpture; Modern art; Stratigraphy; Overpainting

资金

  1. Andrew W. Mellon Foundation [31500630]

向作者/读者索取更多资源

The Whitney Museum of American Art, New York, owns one of the largest motorized works made by the renowned American artist Alexander Calder, titledHalf-Circle, Quarter-Circle, and Sphere. Created in 1932, and acquired by the Whitney in 1969, this seminal work was featured in an iconic exhibition held in 2017 and entitledCalder: Hypermobility. Prior to that, the object underwent a series of treatments in order to repair its main kinetic elements that had become compromised during its lifetime. While the work's mechanism retained its creator's ingenious engineering solutions, the motor, urethane belts, plug, and electrical wires turned out to be neither original, nor authentic to the period. The appearance of the piece had also been altered, as most surfaces displayed multiple layers of overpainting and, thus, did not deliver the proper gloss, hue, and texture. These observations prompted a first, comprehensive scientific study to investigate the stratigraphy of Calder's painted surfaces onHalf-Circle, Quarter-Circle, and Sphere, with the final goal to comprehend and restore its original appearance through careful removal of the overpaint. Non-invasive X-ray fluorescence (XRF) analysis was carried out to gain initial insight into the paints' composition. After that, extensive microscopic sampling was performed to assess the possible presence of original layers below the repainting throughout the object's surface. Cross sections were examined with optical microscopy and analyzed with Fourier-transform infrared (FTIR) and Raman spectroscopies, as well as scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS), in order to identify pigments, colorants, and extenders located in the various paint layers. Scrapings were also investigated with pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) for a detailed characterization of the binding media. Scientific analysis revealed, in selected white and red areas, up to eleven layers of overpaint composed of a wide array of modern materials, including pigments (titanium white in the form of tetragonal rutile and a variety of synthetic organic red pigments) and binders (alkyd or late formulations of enamels based onortho-phthalic acid/phthalic anhydride, glycerol and pentaerythritol, polyvinyl acetate with various plasticizers, and acrylics). On the other hand, the identification of materials that were available in the early 1930s, such as zinc white, calcite, and gypsum, as well as traditional drying oil binders, supported the hypothesis that a layer of original paint may still be present in certain areas. In addition to shedding new light on the stratigraphy of Calder's painted surfaces, this study informed the optimization of a treatment plan tailored for the safe removal of the overpaint to uncover the original layer, wherever present.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据