4.8 Article

Origin of micrometer-scale dislocation motion during hydrogen desorption

期刊

SCIENCE ADVANCES
卷 6, 期 23, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaz1187

关键词

-

资金

  1. NSF [CMMI-1922206, DMR-14-19807]
  2. JSPS KAKENHI [JP16H06365, JP20H02457]
  3. Swiss National Science Foundation [P300P2_171423]
  4. Exelon Corporation-Agreement [Effective 4/1/16]
  5. Department of the Navy, Office of Naval Research under ONR award [N00014-18-1-2284]

向作者/读者索取更多资源

Hydrogen, while being a potential energy solution, creates arguably the most important embrittlement problem in high-strength metals. However, the underlying hydrogen-defect interactions leading to embrittlement are challenging to unravel. Here, we investigate an intriguing hydrogen effect to shed more light on these interactions. By designing an in situ electron channeling contrast imaging experiment of samples under no external stresses, we show that dislocations (atomic-scale line defects) can move distances reaching 1.5 mu m during hydrogen desorption. Combining molecular dynamics and grand canonical Monte Carlo simulations, we reveal that grain boundary hydrogen segregation can cause the required long-range resolved shear stresses, as well as short-range atomic stress fluctuations. Thus, such segregation effects should be considered widely in hydrogen research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据