4.8 Article

Maintenance of mid-latitude oceanic fronts by mesoscale eddies

期刊

SCIENCE ADVANCES
卷 6, 期 31, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aba7880

关键词

-

资金

  1. National Natural Science Foundation of China [41490643, 41490640, 41521091, 41776006, 41822601]
  2. Texas Advanced Computing Center at the University of Texas at Austin
  3. Texas A&M High Performance Research Computing
  4. Center for High Performance Computing and System Simulation, Qingdao National Laboratory for Marine Science and Technology

向作者/读者索取更多资源

Oceanic fronts associated with strong western boundary current extensions vent a vast amount of heat into the atmosphere, anchoring mid-latitude storm tracks and facilitating ocean carbon sequestration. However, it remains unclear how the surface heat reservoir is replenished by ocean processes to sustain the atmospheric heat uptake. Using high-resolution climate simulations, we find that the vertical heat transport by ocean mesoscale eddies acts as an important heat supplier to the surface ocean in frontal regions. This vertical eddy heat transport is not accounted for by the prevailing inviscid and adiabatic ocean dynamical theories such as baroclinic instability and frontogenesis but is tightly related to the atmospheric forcing. Strong surface cooling associated with intense winds in winter promotes turbulent mixing in the mixed layer, destructing the vertical shear of mesoscale eddies. The restoring of vertical shear induces an ageostrophic secondary circulation transporting heat from the subsurface to surface ocean.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据