4.6 Article

Simplified interconnection structure based on C60/SnO2-xfor all-perovskite tandem solar cells

期刊

NATURE ENERGY
卷 5, 期 9, 页码 657-665

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41560-020-0657-y

关键词

-

资金

  1. Office of Energy Efficiency and Renewable Energy (EERE) of the US Department of Energy under Solar Energy Technologies Office (SETO) [DE-EE0006709, DE-EE0008749]
  2. Research Opportunities Initiative of the University of North Carolina System

向作者/读者索取更多资源

The efficiencies of all-perovskite tandem devices are improving quickly. However, their complex interconnection layer (ICL) structures-with typically four or more layers deposited by different processes-limit their prospects for applications. Here, we report an ICL in all-perovskite tandem cells consisting merely of a fullerene layer and a SnO2-x(0 < x < 1) layer. The C(60)layer is unintentionally n-doped by iodine ions from the perovskite and thus acts as an effective electron collecting layer. The SnO(2-x)layer, formed by the incomplete oxidization of tin (x = 1.76), has ambipolar carrier transport property enabled by the presence of a large density of Sn2+. The C-60/SnO1.76ICL forms Ohmic contacts with both wide and narrow bandgap perovskite subcells with low contact resistivity. The ICL boosts the efficiencies of small-area tandem cells (5.9 mm(2)) and large-area tandem cells (1.15 cm(2)) to 24.4% and 22.2%, respectively. The tandem cells remain 94% of its initial efficiency after continues 1-sun illumination for 1,000 h. Interconnecting layers are critical to the efficiency of tandem solar cells and a high number of layers is typically needed to ensure good electrical properties. Yu et. al show that a fullerene/tin-oxide interconnecting layer enables 24.4% efficiency and improved stability in all-perovskite tandem solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据