4.6 Article

Gas Sensor Detecting 3-Hydroxy-2-butanone Biomarkers: Boosted Response via Decorating Pd Nanoparticles onto the {010} Facets of BiVO4 Decahedrons

期刊

ACS SENSORS
卷 5, 期 8, 页码 2620-2627

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.0c01149

关键词

gas sensing; 3-hydroxy-2-butanone biomarker; facet-selective photodeposition; bismuth vanadate; palladium

资金

  1. National Natural Science Foundation of China [21473093]
  2. Fundamental Research Funds for the Central Universities, Nankai University [63201179]
  3. Fundamental Research Funds for the Central Universities
  4. Tianjin Research Program of Application Foundation and Advanced Technology [14 JCYBJC 41300]

向作者/读者索取更多资源

The newly emerged gas sensing detection of 3-hydroxy-2-butanone (3H-2B) biomarker is deemed as an effective avenue to indirectly monitor Listeria monocytogenes (LM). However, 3H-2B sensing materials requiring critically high sensitivity and selectivity, and ppb-level detection limit, remain challenging. Here, we report the advanced gas sensors built with bismuth vanadate microdecahedron (BiVO4 MDCD) {010} facets selectively decorated with Pd nanoparticles (Pd NPs, Pd-{010}BiVO4 MDCDs) for boosted detection of the 3H-2B biomarker. Meanwhile, BiVO4 MDCDs with overall facets are randomly deposited with Pd NPs (Pd-BiVO4 MDCDs). Comparatively, Pd-{010}BiVO4 MDCD sensors show 1 order of magnitude higher response toward the 3H-2B biomarker at 200 degrees C. Further, Pd-{010}BiVO4 MDCD sensors enable to detect as low as 0.2 ppm 3H-2B and show best selectivity and stability, and fastest response and recovery. Density functional theory calculations reveal a lower adsorption energy of 3H-2B onto Pd-{010}BiVO4 MDCDs than those of pristine and Pd-BiVO4 MDCDs. The extraordinary Pd-{010}BiVO4 sensing performance is ascribed to the Pd NP-assisted synergetic effect of the preferential adsorption of 3H-2B target molecules, accumulated sensing agent of ionic oxygen species, and concentrated catalysts on the {010} facets. This strategy offers rapid and noninvasive detection of LMs and is thus of great potential in the upcoming Internet of Things.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据