4.5 Article

High-Speed, Ultrahigh-Resolution Spectral-Domain OCT with Extended Imaging Range Using Reference Arm Length Matching

期刊

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/tvst.9.7.12

关键词

Optical coherence tomography; ultrahigh-resolution OCT; spectral domain OCT; age-related macular degeneration

资金

  1. National Institutes of Health [5-R01-EY011289-33]
  2. Air Force Office of Scientific Research [FA9550-15-1-0473]
  3. Beckman-Argyros Award for Vision Research
  4. Retina Research Foundation

向作者/读者索取更多资源

Purpose: To develop high-speed, extended-range, ultrahigh-resolution spectral-domain optical coherence tomography (UHR SD-OCT) and demonstrate scan protocols for clinical retinal imaging. Methods: A UHR SD-OCT operating at 840-nm with 150-nm bandwidths was developed. The axial imaging range was extended by dynamically matching reference arm length to the retinal contour during acquisition. Two scan protocols were demonstrated for imaging healthy participants and patients with dry age-related macular degeneration. A high-definition raster protocol with intra-B-scan reference arm length matching (ReALM) was used for high-quality cross-sectional imaging. A cube volume scan using horizontal and vertical rasters with inter-B-scan ReALM and software motion correction was used for en face and cross-sectional imaging. Linear OCT signal display enhanced visualization of outer retinal features. Results: UHR SD-OCT was demonstrated at 128- and 250-kHz A-scan rates with 2.7 mu m axial resolution and a 1.2-mm, 6-dB imaging range in the eye. Dynamic ReALM was used to maintain the retina within the 6-dB imaging range over wider fields of view. Outer retinal features, including the rod and cone interdigitation zones, retinal pigment epithelium, and Bruch's membrane were visualized and alterations observed in agerelated macular degeneration eyes. Conclusions: Technological advances and dynamic ReALM improve the imaging performance and clinical usability of UHR SD-OCT. Translational Relevance: These advances should simplify clinical imaging workflow, reduce imaging session times, and improve yield of high quality images. Improved visualization of photoreceptors, retinal pigment epithelium, and Bruch's membrane may facilitate diagnosis and monitoring of age-related macular degeneration and other retinal diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据