4.7 Article

Effect of initial microstructure on the deformation heterogeneities of 316L stainless steels fabricated by selective laser melting processing

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2020.06.015

关键词

316L stainless steel; SLM; EBSD; Microstructure; Deformation

资金

  1. Technology Innovation Program [N0002598]
  2. Ministry of Trade, Industry & Energy (MOTIE, Korea)
  3. Korea Institute for Advancement of Technology

向作者/读者索取更多资源

The selective laser melting (SLM) is a popular additive manufacturing (AM) technique used for the fabrication of metal parts. In the present study, two 316L stainless steel specimens (SLM-I and SLM-II) with different microstructures were fabricated with different levels of energy density by changing the laser power and scanning speed, which are the main SLM process conditions. The deformation and fracture behavior of miniature SLM specimens under uniaxial tension were experimentally measured via optical microscopy (OM), field emission scanning microscopy (FE-SEM), and an electron back-scattered diffraction (EBSD) technique. In order to analyze the deformation heterogeneities under uniaxial tension, the inverse pole figure (IPF) map, kernel average misorientation (KAM) map, Taylor factor (TF) map, grain boundaries (GBs), E3 twin boundaries (TBs), and melt pool boundaries (MPBs) developed in deformed SLM specimens were analyzed at different strain levels. The effect of microstructural factors on the deformation heterogeneities of SLM specimens was explained by the evolution of KAM, GBs, MPBs, and E3 TBs. The initial microstructures of the SLM specimens significantly influenced the generation and propagation of cracks under uniaxial tension. (C) 2020 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据