4.4 Article

CAR T Cell Generation by piggyBac Transposition from Linear Doggybone DNA Vectors Requires Transposon DNA-Flanking Regions

期刊

出版社

CELL PRESS
DOI: 10.1016/j.omtm.2019.12.020

关键词

-

资金

  1. Cancer Council NSW [RG17-09]
  2. Leukaemia Foundation of Australia
  3. Haematology Society of Australia and New Zealand
  4. Cancer Institute of New South Wales
  5. Sydney West Translational Cancer Research Centre
  6. Westmead Research Hub
  7. National Health and Medical Research Council

向作者/读者索取更多资源

CD19-specific chimeric antigen receptor (CAR19) T cells, generated using viral vectors, are an efficacious but costly treatment for B cell malignancies. The nonviral piggyBac transposon system provides a simple and inexpensive alternative for CAR19 T cell production. Until now, piggyBac has been plasmid based, facilitating economical vector amplification in bacteria. However, amplified plasmids have several undesirable qualities for clinical translation, including bacterial genetic elements, antibiotic-resistance genes, and the requirement for purification to remove endotoxin. Doggybones (dbDNA) are linear, covalently closed, minimal DNA vectors that can be inexpensively produced enzymatically in vitro at large scale. Importantly, they lack the undesirable features of plasmids. We used dbDNA incorporating piggy-Bac to generate CAR19 T cells. Initially, expression of functional transposase was evident, but stable CAR expression did not occur. After excluding other causes, additional random DNA flanking the transposon within the dbDNA was introduced, promoting stable CAR expression comparable to that of using plasmid components. Our findings demonstrate that dbDNA incorporating piggyBac can be used to generate CAR T cells and indicate that there is a requirement for DNA flanking the piggyBac transposon to enable effective transposition. dbDNA may further reduce the cost and improve the safety of CAR T cell production with transposon systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据