4.5 Article

Atmospheric Escape Processes and Planetary Atmospheric Evolution

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019JA027639

关键词

-

资金

  1. NASA Nexus for Exoplanet System Science [NNX15AE05G]
  2. PRODEX/Cluster Contract [13127/98/NL/VJ(IC)-PEA90316]
  3. Austrian Science Fund [P32035-N36]
  4. Austrian Science Fund (FWF) [P32035] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

The habitability of the surface of any planet is determined by a complex evolution of its interior, surface, and atmosphere. The electromagnetic and particle radiation of stars drive thermal, chemical, and physical alteration of planetary atmospheres, including escape. Many known extrasolar planets experience vastly different stellar environments than those in our solar system: It is crucial to understand the broad range of processes that lead to atmospheric escape and evolution under a wide range of conditions if we are to assess the habitability of worlds around other stars. One problem encountered between the planetary and the astrophysics communities is a lack of common language for describing escape processes. Each community has customary approximations that may be questioned by the other, such as the hypothesis of H-dominated thermosphere for astrophysicists or the Sun-like nature of the stars for planetary scientists. Since exoplanets are becoming one of the main targets for the detection of life, a common set of definitions and hypotheses are required. We review the different escape mechanisms proposed for the evolution of planetary and exoplanetary atmospheres. We propose a common definition for the different escape mechanisms, and we show the important parameters to take into account when evaluating the escape at a planet in time. We show that the paradigm of the magnetic field as an atmospheric shield should be changed and that recent work on the history of Xenon in Earth's atmosphere gives an elegant explanation to its enrichment in heavier isotopes: the so-called Xenon paradox.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据