4.6 Article

A Genome-Wide Association Study on Feed Efficiency Related Traits in Landrace Pigs

期刊

FRONTIERS IN GENETICS
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2020.00692

关键词

genome-wide association study; feed efficiency; feed conversion ratio; average daily gain; average daily feed intake; residual feed intake

资金

  1. earmarked fund for the National Key Research and Development Project [2019YFE0106800]
  2. China Agriculture Research System [CARS-35]
  3. Modern Agriculture Science and Technology Key Project of Hebei Province [19226376D]
  4. National Natural Science Foundation of China [31671327]
  5. Major Project of Selection for New Livestock and Poultry Breeds of Zhejiang Province [2016C02054-5]
  6. Anhui Academy of Agricultural Sciences Key Laboratory Project [2019YL021]

向作者/读者索取更多资源

Feed efficiency (FE) traits in pigs are of utmost economic importance. Genetic improvement of FE related traits in pigs might significantly reduce production cost and energy consumption. Hence, our study aimed at identifying SNPs and candidate genes associated with FE related traits, including feed conversion ratio (FCR), average daily gain (ADG), average daily feed intake (ADFI), and residual feed intake (RFI). A genome-wide association study (GWAS) was performed for the four FE related traits in 296 Landrace pigs genotyped with PorcineSNP50 BeadChip. Two different single-trait methods, single SNP linear model GWAS (LM-GWAS) and single-step GWAS (ssGWAS), were implemented. Our results showed that the two methods showed high consistency with respect to SNP identification. A total of 32 common significant SNPs associated with the four FE related traits were identified. Bioinformatics analysis revealed eight common QTL regions, of which three QTL regions related to ADFI and RFI traits were overlapped. Gene ontology analysis revealed six common candidate genes (PRELID2, GPER1, PDX1, TEX2, PLCL2, ICAM2) relevant for the four FE related traits. These genes are involved in the processes of fat synthesis and decomposition, lipid transport process, insulin metabolism, among others. Our results provide, new insights into the genetic mechanisms and candidate function genes of FE related traits in pigs. However, further investigations to validate these results are warranted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据