4.7 Article

Current understanding of surface effects in microcutting

期刊

MATERIALS & DESIGN
卷 192, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2020.108688

关键词

Microcutting; Surface effects; Chemisorption; Coatings; Diamond turning; Ultraprecision machining

资金

  1. Singapore Ministry of Education Academic Research Fund Tier 1 [R-265-000-686-114]
  2. AcRF Tier 2 [MOE2018-T2-1-140]

向作者/读者索取更多资源

Machining processes have made technological leaps in achieving ultraprecision material removal and surface finishing at the submicrometric scale. At this level of precision, size effects have dominated machining investiga tions while surface effects have often been overlooked. The majority of micromachining research works are ignorant of the potential implications that these phenomena bring as the characteristic length approaches the ultraprecision machining level. In this review, physicochemical and physical surface effects are discussed by examining the theoretical developments and applications of each phenomenon in machining. These effects include the Rehbinder effect, solid coatings, and extrusion-cutting. Substantial mesoscopic analyses have been performed on metals with the Rehbinder effect and extrusion-cutting but the inherently different material deformation characteristics in microcutting invite further investigations. While solid coating effects have been reported at the microscale, its discovery questions the influence of other inevitably formed surface coatings (i.e. oxide layers). To these ends, key areas for future research in the microcutting of engineering metals and brittle materials are proposed in addition to the integration with unavoidable size effects. As machining technology and material characterization techniques progress into the nanometric scale, there is a need to rally efforts towards the embrace of surface phenomena in microcutting. (c) 2020 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据