4.7 Article

The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718

期刊

MATERIALS & DESIGN
卷 191, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2020.108642

关键词

Energy density; Selective laser melting; Texture; Taylor factor

资金

  1. Key R&D Plan of the Chinese Ministry of Science and Technology [2018YFB1105900]

向作者/读者索取更多资源

Laser additive manufacturing offers a unique way of tuning microstructure to improve alloy properties with a high degree of freedom by modifying the process parameters such as energy density. This work focuses on the energy density dependence of texture anisotropy and mechanical properties processed by selective laser melting (SLM) of IN 718 superalloy at different laser scanning speeds. It was found that strong columnar grains and <001> fiber texture become insignificant due to insufficient epitaxial growth as energy density decreases. The discrepancies in Taylor factor distributions induced by texture anisotropy are mainly responsible for the difference in tensile mechanical properties for samples built at different orientations. High Taylor factors lead to the increased strength of diagonally built testing samples. In addition, grain refinement enhances the strengthening effect as energy density decreases. (C) 2020 The Author(s). Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据