4.7 Article

A design framework for gradually stiffer mechanical metamaterial induced by negative Poisson's ratio property

期刊

MATERIALS & DESIGN
卷 192, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2020.108751

关键词

Topology optimization; NPR property; GS property; Mechanical metamaterials; AM

资金

  1. National Natural Science Foundation of China [51705166, 51825502]
  2. Fundamental Research Funds for the Central Universities through Program [2019kfyXKJC042]

向作者/读者索取更多资源

Gradually stiffer (GS) mechanical metamaterial is a novel kind of adaptive structures under nonlinear varying loads for cushioning and vibration damping in engineering. These man-made metamaterials in applications are usually tailored by trial-and-error. This study develops a design framework that integrates the topology optimization, parametric design and compression experiment for the GS mechanical metamaterials induced by the negative Poisson's ratio (NPR) property. Firstly, a parametric level set method is incorporated with the numerical homogenization method to topologically optimize a series of microstructural unit cells with different NPRs. Then, the nonlinear static analysis is respectively applied to different unit cells to check their GS behavior. Secondly, typical microstructures with GS property are selected and simplified to perform the subsequent parametric design to analyze the expected property. Thirdly, the obtained mechanical metamaterials are fabricated by using the additive manufacturing (AM). GS properties of the obtained designs are analyzed and verified by both the simulation and compression experiments. Results show that we could obtain the GS mechanical metamaterial based on NPR properties for their similar characteristics. This study demonstrates that the proposed design framework is effective to tailor innovative layouts of the GS mechanical metamaterials. (C) 2020 The Author(s). Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据