4.7 Article

Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides

期刊

PHOTONICS RESEARCH
卷 8, 期 9, 页码 1475-1483

出版社

OPTICAL SOC AMER
DOI: 10.1364/PRJ.396489

关键词

-

类别

资金

  1. Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung [176563]
  2. U.S. Air Force [FA9550-19-1-0250]
  3. Defense Advanced Research Projects Agency [HR0011-15-C-055]
  4. European Research Council [ERC-2017-CoG 771647]
  5. Microsystems Technology Office (MTO)
  6. Air Force Material Command
  7. Air Force Office of Scientific Research
  8. EPFL Center of MicroNanoTechnology (CMi)

向作者/读者索取更多资源

Quasi-phase-matching (QPM) has become one of the most common approaches for increasing the efficiency of nonlinear three-wave mixing processes in integrated photonic circuits. Here, we provide a study of dispersion engineering of QPM second-harmonic (SH) generation in stoichiometric silicon nitride (Si3N4) waveguides. We apply waveguide design and lithographic control in combination with the all-optical poling technique to study the QPM properties and shape the waveguide dispersion for broadband spectral conversion efficiency inside Si3N4 waveguides. By meeting the requirements for maximal bandwidth of the conversion efficiency spectrum, we demonstrate that group-velocity matching of the pump and SH is simultaneously satisfied, resulting in efficient SH generation from ultrashort optical pulses. The latter is employed for retrieving a carrier-envelope-offset frequency of a frequency comb by using an f - 2f interferometric technique, where supercontinuum and SH of a femtosecond pulse are generated in Si3N4 waveguides. Finally, we show that the waveguide dispersion determines the QPM wavelength variation magnitude and sign due to the thermo-optic effect. (C) 2020 Chinese Laser Press

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据