4.6 Article

A novel multi-step strategy of single point incremental forming for high wall angle shape

期刊

JOURNAL OF MANUFACTURING PROCESSES
卷 56, 期 -, 页码 697-706

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jmapro.2020.05.009

关键词

Incremental forming; Multi-step strategy; Aluminum alloy; Thickness distribution; Stepped feature

资金

  1. Amada Foundation [AF-2018010]

向作者/读者索取更多资源

Single point incremental forming (SPIF) is a die-less manufacturing technology using a numerical controlling system for complex and customized parts. However, single-step SPIF cannot achieve high wall angle shapes due to the formability limit of the material. As wall angle gets larger, local thinning becomes severe, and cracking occurs easily. Generally, a multi-step strategy is used to get a hard-to-form deep drawing shape. However, inappropriate multi-step strategies can cause a stepped feature (corrugation). In this study, a novel parameterized multi-step strategy is proposed to solve the local thinning and stepped feature issues of forming high wall angle shape. Both experimental and simulation results showed this strategy not only improves the formability of a high wall angle, by avoiding over-thinning in the local region and redistributing the thickness of the material, but also minimizes geometric deviation by stepped feature. The multi-step strategy made the local thickness increase from 0.47 mm to 0.68 mm, preventing both cracking observed in a single-step strategy and the occurrence of the stepped feature. With the good agreement between experimental and simulation results, simulations with different parameters in a parameterized multi-step strategy were carried out to compare thickness distribution at each step, the stepped feature at the bottom and the ductile failure tendency. The comparison reveals that the locally large plastic strain, which was caused by the mismatch between the tool radius and vertical displacement, is the main reason for uneven thickness distribution, obvious stepped feature, and high failure tendency. With appropriate parameters, a multi-step strategy results in a more uniform thickness distribution, higher geometric accuracy, and lower failure tendency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据