4.7 Article

Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates

期刊

COMBUSTION AND FLAME
卷 164, 期 -, 页码 400-409

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2015.09.009

关键词

Jet flame height; Lift-off distance; Flamelet modelling; Fracking; Jet flame stability; Mean flame surface density

资金

  1. Royal Society
  2. Engineering and Physical Sciences Research Council [EP/K030914/1] Funding Source: researchfish
  3. EPSRC [EP/K030914/1] Funding Source: UKRI

向作者/读者索取更多资源

An extensive review and re-thinking of jet flame heights and structure, extending into the choked/supersonic regime is presented, with discussion of the limitations of previous flame height correlations. Completely new dimensionless correlations for the plume heights, lift-off distances, and mean flame surface densities of atmospheric jet flames, in the absence of a cross wind, are presented. It was found that the same flow rate parameter could be used to correlate both plume heights and flame lift-off distances. These are related to the flame structure, jet flame instability, and flame extinction stretch rates, as revealed by complementary experiments and computational studies. The correlations are based on a vast experimental data base, covering 880 flame heights. They encompass pool fires and flares, as well as choked and unchoked jet flames of CH4, C2H2, C2H4, C3H8, C4H10 and H-2, over a wide range of conditions. Supply pressures range from 0.06 to 90 MPa, discharge diameters from 4 x 10(-4) to 1.32 m, and flame heights from 0.08 to 110 m. The computational studies enabled reaction zone volumes to be estimated, as a proportion of the plume volumes, measured from flame photographs, and temperature contours. This enabled mean flame surface densities to be estimated, together with mean volumetric heat releases rates. There is evidence of a saturation mean surface density and increases in turbulent burn rates being accomplished by near pro rata increases in the overall volume of reacting mixture. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据