4.7 Article

Tensegrity Modelling and the High Toughness of Spider Dragline Silk

期刊

NANOMATERIALS
卷 10, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/nano10081510

关键词

spider silk; scanning electron microscopy; plasma etching; mesoscale modelling; tensegrity systems; biomimetic fibres

资金

  1. Italian Ministry of Education, University and Research (MIUR) under the P.R.I.N. 2017 National Grant Multiscale Innovative Materials and Structures [2017J4EAYB]
  2. EPSRC [EP/N008065/1, 1816190, EP/K005693/1]
  3. EPSRC [EP/N008065/1, EP/K005693/1, 1816190] Funding Source: UKRI

向作者/读者索取更多资源

This work establishes a tensegrity model of spider dragline silk. Tensegrity systems are ubiquitous in nature, being able to capture the mechanics of biological shapes through simple and effective modes of deformation via extension and contraction. Guided by quantitative microstructural characterization via air plasma etching and low voltage scanning electron microscopy, we report that this model is able to capture experimentally observed phenomena such as the Poisson effect, tensile stress-strain response, and fibre toughness. This is achieved by accounting for spider silks' hierarchical organization into microfibrils with radially variable properties. Each fibril is described as a chain of polypeptide tensegrity units formed by crystalline granules operating under compression, which are connected to each other by amorphous links acting under tension. Our results demonstrate, for the first time, that a radial variability in the ductility of tensegrity chains is responsible for high fibre toughness, a defining and desirable feature of spider silk. Based on this model, a discussion about the use of graded tensegrity structures for the optimal design of next-generation biomimetic fibres is presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据