4.7 Article

Graphene Oxide: Study of Pore Size Distribution and Surface Chemistry Using Immersion Calorimetry

期刊

NANOMATERIALS
卷 10, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/nano10081492

关键词

graphene oxide; PSD; immersion calorimetry; hummer method; probe molecules; QSDFT; NLDFT

资金

  1. COLCIENCIAS [163-2019, 120480863981]

向作者/读者索取更多资源

In this work, the textural parameters of graphene oxide (GO) and graphite (Gr) samples were determined. The non-local density functional theory (NLDFT) and quenched solid density functional theory (QSDFT) kernels were used to evaluate the pore size distribution (PSD) by modeling the pores as slit, cylinder and slit-cylinder. The PSD results were compared with the immersion enthalpies obtained using molecules with different kinetic diameter (between 0.272 nm and 1.50 nm). Determination of immersion enthalpy showed to track PSD for GO and graphite (Gr), which was used as a comparison solid. Additionally, the functional groups of Gr and GO were determined by the Boehm method. Donor number (DN) Gutmann was used as criteria to establish the relationship between the immersion enthalpy and the parameter of the probe molecules. It was found that according to the Gutmann DN the immersion enthalpy presented different values that were a function of the chemical groups of the materials. Finally, the experimental and modeling results were critically discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据