4.7 Article

TAO-DFT Study on the Electronic Properties of Diamond-Shaped Graphene Nanoflakes

期刊

NANOMATERIALS
卷 10, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/nano10061236

关键词

TAO-DFT; electronic properties; graphene nanoflakes; radical nature; strong static correlation

资金

  1. Ministry of Science and Technology of Taiwan [MOST107-2628-M-002-005-MY3]
  2. National Taiwan University [NTU-CDP-105R7818]
  3. NCTS of Taiwan

向作者/读者索取更多资源

At the nanoscale, it has been rather troublesome to properly explore the properties associated with electronic systems exhibiting a radical nature using traditional electronic structure methods. Graphene nanoflakes, which are graphene nanostructures of different shapes and sizes, are typical examples. Recently, TAO-DFT (i.e., thermally-assisted-occupation density functional theory) has been formulated to tackle such challenging problems. As a result, we adopt TAO-DFT to explore the electronic properties associated with diamond-shaped graphene nanoflakes withn= 2-15 benzenoid rings fused together at each side, designated asn-pyrenes (as they could be expanded from pyrene). For all thenvalues considered,n-pyrenes are ground-state singlets. With increasing the size ofn-pyrene, the singlet-triplet energy gap, vertical ionization potential, and fundamental gap monotonically decrease, while the vertical electron affinity and symmetrized von Neumann entropy (which is a quantitative measure of radical nature) monotonically increase. Whennincreases, there is a smooth transition from the nonradical character of the smallern-pyrenes to the increasing polyradical nature of the largern-pyrenes. Furthermore, the latter is shown to be related to the increasing concentration of active orbitals on the zigzag edges of the largern-pyrenes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据