4.6 Article

Effects of Acute Exercise and Training on the Sarcoplasmic Reticulum Ca2+Release and Uptake Rates in Highly Trained Endurance Athletes

期刊

FRONTIERS IN PHYSIOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2020.00810

关键词

sarcoplasmic reticulum; fatigue; Ca(2+)handling; athletes; exercise; training

资金

  1. Swedish National Centre for Research in Sports (CIF) [FO2013-0033]
  2. Danish Ministry of Culture [TAKT2013-104]
  3. Team Danmark

向作者/读者索取更多资源

Little is presently known about the effects of acute high-intensity exercise or training on release and uptake of Ca(2+)by the sarcoplasmic reticulum (SR). The aims here were to characterize this regulation in highly trained athletes following (1) repeated bouts of high-intensity exercise and (2) a period of endurance training including high-intensity sessions. Eleven cross-country skiers (25 +/- 4 years, 65 +/- 4 mL O-2.kg(-1).min(-1)) performed four self-paced sprint time-trials (STT 1-4) lasting approximate to 4 min each (STT 1-4) and separated by 45 min of recovery; while 19 triathletes and road cyclists (25 +/- 4 years, 65 +/- 5 mL O-2.kg(-1).min(-1)) completed 4 weeks of endurance training in combination with three sessions of high-intensity interval cycling per week. Release (mu mol.g(-1)prot.min(-1)) and uptake [tau (s)] of Ca(2+)by SR vesicles isolated from m.triceps brachiiand m.vastus lateraliswere determined before and after STT 1 and 4 in the skiers and in m.vastus lateralisbefore and after the 4 weeks of training in the endurance athletes. The Ca(2+)release rate was reduced by 17-18% in both limbs already after STT 1 (arms: 2.52 +/- 0.74 to 2.08 +/- 0.60; legs: 2.41 +/- 0.45 to 1.98 +/- 0.51,P< 0.0001) and attenuated further following STT 4 (arms: 2.24 +/- 0.67 to 1.95 +/- 0.45; legs: 2.13 +/- 0.51 to 1.83 +/- 0.36,P< 0.0001). Also, there was a tendency toward an impairment in the SR Ca(2+)uptake from pre STT1 to post STT4 in both arms and legs (arms: from 22.0 +/- 3.7 s to 25.3 +/- 6.0 s; legs: from 22.5 +/- 4.7 s to 25.5 +/- 7.7 s,P= 0.05). Endurance training combined with high-intensity exercise increased the Ca(2+)release rate by 9% (1.76 +/- 0.38 to 1.91 +/- 0.44,P= 0.009), without altering the Ca(2+)uptake (29.6 +/- 7.0 to 29.1 +/- 8.7 s;P= 0.98). In conclusion, the Ca(2+)release and uptake rates by SR in exercising limbs of highly trained athletes declines gradually by repetitive bouts of high-intensity exercise. We also demonstrate, for the first time, that the SR Ca(2+)release rate can be enhanced by a specific program of training in highly trained athletes, which may have important implications for performance parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据