4.6 Article

Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications

期刊

FRONTIERS IN NEUROSCIENCE
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnins.2020.00662

关键词

neuromorphic computing; spiking networks; loss function; synaptic operations; energy consumption; convolutional networks; CIFAR10; MNIST-DVS

资金

  1. H2020 ECSEL grant TEMPO [826655]

向作者/读者索取更多资源

In the last few years, spiking neural networks (SNNs) have been demonstrated to perform on par with regular convolutional neural networks. Several works have proposed methods to convert a pre-trained CNN to a Spiking CNN without a significant sacrifice of performance. We demonstrate first that quantization-aware training of CNNs leads to better accuracy in SNNs. One of the benefits of converting CNNs to spiking CNNs is to leverage the sparse computation of SNNs and consequently perform equivalent computation at a lower energy consumption. Here we propose an optimization strategy to train efficient spiking networks with lower energy consumption, while maintaining similar accuracy levels. We demonstrate results on the MNIST-DVS and CIFAR-10 datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据