4.5 Article

Elucidating Epigenetic Regulation by Identifying Functionalcis-Acting Long Noncoding RNAs and Their Targets in Osteoarthritic Articular Cartilage

期刊

ARTHRITIS & RHEUMATOLOGY
卷 72, 期 11, 页码 1845-1854

出版社

WILEY
DOI: 10.1002/art.41396

关键词

-

资金

  1. Leiden University Medical Center

向作者/读者索取更多资源

Objective To identify robustly differentially expressed long noncoding RNAs (lncRNAs) with osteoarthritis (OA) pathophysiology in cartilage and to explore potential target messenger RNA (mRNA) by establishing coexpression networks, followed by functional validation. Methods RNA sequencing was performed on macroscopically lesioned and preserved OA cartilage from patients who underwent joint replacement surgery due to OA (n = 98). Differential expression analysis was performed on lncRNAs that were annotated in GENCODE and Ensembl databases. To identify potential interactions, correlations were calculated between the identified differentially expressed lncRNAs and the previously reported differentially expressed protein-coding genes in the same samples. Modulation of chondrocyte lncRNA expression was achieved using locked nucleic acid GapmeRs. Results By applying our in-house pipeline, we identified 5,053 lncRNAs that were robustly expressed, of which 191 were significantly differentially expressed (according to false discovery rate) between lesioned and preserved OA cartilage. Upon integrating mRNA sequencing data, we showed that intergenic and antisense differentially expressed lncRNAs demonstrate high, positive correlations with their respective flanking sense genes. To functionally validate this observation, we selectedP3H2-AS1, which was down-regulated in primary chondrocytes, resulting in the down-regulation ofP3H2gene expression levels. As such, we can confirm thatP3H2-AS1regulates its sense geneP3H2. Conclusion By applying an improved detection strategy, robustly differentially expressed lncRNAs in OA cartilage were detected. Integration of these lncRNAs with differential mRNA expression levels in the same samples provided insight into their regulatory networks. Our data indicates that intergenic and antisense lncRNAs play an important role in regulating the pathophysiology of OA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据