4.5 Article

PEG Modified CsPbIBr2 Perovskite Film for Efficient and Stable Solar Cells

期刊

ADVANCED MATERIALS INTERFACES
卷 7, 期 13, 页码 -

出版社

WILEY
DOI: 10.1002/admi.202000537

关键词

CsPbIBr2; efficiency; perovskite solar cells; poly(ethylene glycol); stability

资金

  1. National Natural Science Foundation of China [51872191, 51772197, 51422206, 51372159]
  2. 333 High-level Talents Cultivation Project of Jiangsu Province
  3. Key University Science Research Project of Jiangsu Province [17KJA430013]
  4. Six Talents Peak Project of Jiangsu Province
  5. Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

Cesium lead mixed-halide perovskite (CsPbIBr2), as one of the all-inorganic perovskites, has attracted great attention owing to its great ambient stability and suitable bandgap. Unfortunately, due to its low film coverage, high density of defects and unfavorable band energy level, the CsPbIBr2 based solar cells suffer from low efficiency. In this work, the Lewis base poly(ethylene glycol) (PEG) is adopted as additive to modify the pure CsPbIBr2. By optimizing the molecular weight and dosage of PEG, the resultant PEG:CsPbIBr2 film possesses suppressed non-radiative electron-hole recombination, a favorable energy band structure and a weaker sensitive to the moisture. As a result, the device based on the PEG:CsPbIBr2 yields a champion power conversion efficiency (PCE) of 11.10%, with a open-circuit voltage of 1.21 V, a short-circuit current of 12.25 mA cm(-2), and a fill factor of 74.82%, which is 44.3% higher than its counterpart without PEG. Moreover, the PEG modified device shows excellent long-term stability, retaining over 90% of the initial efficiency after 600 h storage in ambient condition without encapsulation. In comparison, the device without PEG shows an inferior stability with PCE sharply dropping to 0% within 50 h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据