4.6 Article

Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal-Semiconductor Nanojunctions

期刊

ACS PHOTONICS
卷 7, 期 7, 页码 1642-1648

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.0c00557

关键词

surface plasmon; hot electrons; aluminum; germanium; nanowire; negative differential resistance

资金

  1. Austrian Science Fund (FWF) [P29729-N27]
  2. Laboratoire d'excellence LANEF in Grenoble [ANR-10-LABX-51-01]
  3. ANR-COSMOS project [ANR-12-JS10-0002]
  4. Campus France [35592PB]
  5. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program [758385]
  6. EPSRC [EP/M013812/1] Funding Source: UKRI
  7. European Research Council (ERC) [758385] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photocatalysis, and photodetection. However, a detailed understanding of plasmonic hot carrier generation and, particularly, the transfer at metal-semiconductor interfaces is still elusive. In this paper, we introduce a monolithic metal-semiconductor (Al-Ge) heterostructure device, providing a platform to examine surface plasmon decay and hot electron transfer at an atomically sharp Schottky nanojunction. The gated metal-semiconductor heterojunction device features electrostatic control of the Schottky barrier height at the Al-Ge interface, enabling hot electron filtering. The ability of momentum matching and electron injection is demonstrated by controlling the interband electron to control the energy distribution of plasmon-driven hot transfer in Ge, leading to negative differential resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据