4.5 Article

A Novel Method for Detection of Tuberculosis in Chest Radiographs Using Artificial Ecosystem-Based Optimisation of Deep Neural Network Features

期刊

SYMMETRY-BASEL
卷 12, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/sym12071146

关键词

Tuberculosis (TB); transfer learning; convolutional neural networks; deep learning; Artificial Ecosystem-based Optimization; image processing

向作者/读者索取更多资源

Tuberculosis (TB) is is an infectious disease that generally attacks the lungs and causes death for millions of people annually. Chest radiography and deep-learning-based image segmentation techniques can be utilized for TB diagnostics. Convolutional Neural Networks (CNNs) has shown advantages in medical image recognition applications as powerful models to extract informative features from images. Here, we present a novel hybrid method for efficient classification of chest X-ray images. First, the features are extracted from chest X-ray images using MobileNet, a CNN model, which was previously trained on the ImageNet dataset. Then, to determine which of these features are the most relevant, we apply the Artificial Ecosystem-based Optimization (AEO) algorithm as a feature selector. The proposed method is applied to two public benchmark datasets (Shenzhen and Dataset 2) and allows them to achieve high performance and reduced computational time. It selected successfully only the best 25 and 19 (for Shenzhen and Dataset 2, respectively) features out of about 50,000 features extracted with MobileNet, while improving the classification accuracy (90.2% for Shenzen dataset and 94.1% for Dataset 2). The proposed approach outperforms other deep learning methods, while the results are the best compared to other recently published works on both datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据