4.5 Article

A Study on Performance Characteristics of a Heat Pump System with High-Pressure Side Chiller for Light-Duty Commercial Electric Vehicles

期刊

SYMMETRY-BASEL
卷 12, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/sym12081237

关键词

cooling and heating mode; heat pump; high-pressure chiller; light-duty commercial electric vehicle; system performance

资金

  1. Ministry of Trade, Industry & Energy(MOTIE), Korea Evaluation Institute of Industrial Technology (KEIT) through the Industrial Technology Innovation Program [20003988]
  2. Korea Evaluation Institute of Industrial Technology (KEIT) [20003988] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

One of barriers for the present heat pump system's application in an electric vehicle was decreased performance under cold ambient conditions due to the lack of evaporating heat source. In order to improve the heat pump's performance, a high-pressure side chiller was additionally installed, and the tested heat pump system was modified with respect to refrigerant flow direction along with operating modes. In the present work, the performance characteristics of the heat pump system with a high-pressure side chiller for light-duty commercial electric vehicles were studied experimentally under hot and cold ambient conditions, reflecting real road driving. The high-pressure side chiller was located after the electric compressor so that the highest refrigerant temperature transferred the heat to the coolant. The controlled coolant with discharged refrigerant from the electric compressor was used to heat up the cabin, transferring heat to the inlet air like the internal combustion engine vehicle's heating system, except with unused engine waste heat. In the cooling mode, for the exterior air temperature of 35 degrees C and interior air temperature of 25 degrees C, cooling performance along with the compressor speed showed that the system efficiency decreased by 16.4% on average, the cooling capacity increased by 8.0% on average and the compressor work increased by 27% on average. In heating mode, at the exterior and interior air temperature of -6.7 degrees C, compressor speed and coolant temperature variation with steady conditions were tested with respect to heating performance. In transient mode, to increase coolant temperature with a closed loop from -6.7 degrees C, tested system characteristics were studied along the compressor speed with respect to heating up the cabin. As the inlet air of the HVAC was maintained at -6.7 degrees C, even though the heat-up rate of the cabin room was a little slow, the cabin temperature reached 20 degrees C within 50 min and the temperature difference with the ambient air attained 28.7 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据