4.7 Article

Doxorubicin-loaded photosensitive magnetic liposomes for multi-modal cancer therapy

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 148, 期 -, 页码 157-164

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2016.08.055

关键词

Magnetic hyperthermia; Superparamagnetic; Liposomes; Doxorubicin; HeLa cells; MTT assay; Proteome analysis

向作者/读者索取更多资源

Multifunctional magnetic nanosystems have attracted an enormous attention of researchers for their potential applications in cancer diagnostics and therapy. The localized nanotherapies triggered by the external stimuli, like magnetic fields and visible light, are significant in clinical applications. We report a liposomal system that aims to treat cancer by magnetic hyperthermia, photodynamic therapy and chemotherapy simultaneously. The liposomes enclose clinically used photosensitizer m-THPC (Foscan) and anti-cancer drug doxorubicin, in its hydrophobic lipid bilayers, and contains magnetite nanoparticles in hydrophilic core. Three different sizes of magnetic nanoparticles (10, 22 and 30 nm) and liposomes (40, 70 and 110nm) were used in this study. Magnetite single domain nanoparticles forming the magnetic core were superparamagnetic but liposomes expressed slight coercivity and hysteresis due to the clustering of nanoparticles in the core. This enhanced the heating efficiency (specific power loss) of the liposomes under an AC field (375 kHz, 170 Oe). Cell viability and toxicity were studied on HeLa cells using MTT assay and proteomic analysis. Confocal and fluorescence microscopy were used to study the photosensitizer's profile and cells response to combined therapy. It revealed that combined therapy almost completely eliminated the cancer cells as opposed to the separate treatments. Magnetic hyperthermia and photodynamic therapies were almost equally effective whereas chemotherapy showed the least effect. (C) 2016 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据