4.8 Article

Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution

期刊

NANO ENERGY
卷 74, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2020.104909

关键词

Chemical etching; Heterojunction; Metal-organic frameworks; Photocatalytic hydrogen evolution; TiO2

资金

  1. National Natural Science Foundation of China [21671085, 21701063]
  2. Natural Science Foundation of Jiangsu Province [BK20161160, BK20191466]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions
  4. Jiangsu Overseas Visiting Scholar Program for University Prominent Yong AMP
  5. Middle-Aged Teachers and Presidents
  6. Singapore Agency for Science, Technology and Research (A*STAR) AME IRG grant [A1783c0007]

向作者/读者索取更多资源

Close heterojunction interface, open diffusion channel and the reactivity of the exposed facet are three key factors that affect the photocatalytic activity of porous heterojunction materials. It is significant to study the influence of these three factors on the photocatalytic activity of metal-organic framework (MOF)-based heterojunction systems. Herein, we synthesized the TiO2@NH2-MIL-125(Ti) frame structure (TiO2@MOF FS) by insitu self-sacrificial hydrolytic etching approach with directional chemical protection, where four exposed facets are all active NH2-MIL-125(Ti) {100} facets. According to the structural characteristics of NH2-MIL-125(Ti) {100} facets, tannic acid was selected as the directional protective agent, and NH2-MIL-125(Ti) was etched from the inside out by the hydrolysis method. The obtained TiO2@MOF FS possessed tight heterojunction interface between TiO2 and NH2-MIL-125(Ti), while maintaining the open diffusion channels of NH2-MIL-125(Ti). Benefited from the improved electrical conductivity, open diffusion channels and high reactivity of the exposed facets, the obtained TiO2@MOF FS showed excellent photocatalytic hydrogen production efficiency under sun light illumination, without the deposition of any noble metal co-catalyst. This work provides a novel research idea for the fabrication of highly efficient MOF-based photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据