4.8 Article

Holey graphene-based nanocomposites for efficient electrochemical energy storage

期刊

NANO ENERGY
卷 73, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2020.104762

关键词

Holey graphene; Functional nanocomposites; Controllable synthesis; Structure-property relationships; Electrochemical energy storage

资金

  1. National Natural Science Foundation of China [51873039, 51673042]
  2. Young Elite Scientist Sponsorship Program by CAST [2017QNRC001]
  3. start-up fund of Henan University [CX3050A0920134]

向作者/读者索取更多资源

Graphene, versatile building blocks for functional composite materials, shows multiple fascinating properties and draws great interest, especially in the field of electrochemical energy storage. However, several common drawbacks still persist, including (i) it tends to aggregate and restack to loss the surface area, (ii) it is difficult to composite with other materials due to the limited processibility (e.g, limited functional groups or defect sites), (iii) it lacks efficient molecules/ions transport channels. Thus, it presents a great challenge to prepare graphenebased nanocomposites for various applications, including energy storage. However, the recent availability of holey graphene (HG) has led to numerous HG-based functional composites of practicle significance. This review presents a comprehensive overview of the synthesis of HG and its nanocomposites, and their applications for electrochemical energy storage, including supercapacitors, lithium ion/sulfur/O-2/CO2 batteries, sodium ion batteries, potassium ion batteries, Zn-air batteries, fuel cells and solar cells. The structure-property relationships of various HG-based nanocomposites will be thoroughly discussed, along with the pros and cons. The current challenges and future perspectives of HG-based nanocomposites are also outlined. This review should promote the fundamental understanding and further development of HG-based nanocomposites for electrochemical energy storage and even beyond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据