4.8 Article

An artificial piezotronic synapse for tactile perception

期刊

NANO ENERGY
卷 73, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2020.104756

关键词

Tactile perception; Piezotronic; Artificial synapse; Highly transparent; Flexible

资金

  1. National Research Foundation of Korea [NRF-2018R1D1A1B07049871, NRF-2019R1A2C2003804, NRF-2019M3F3A1A03079739]
  2. Ministry of Science and ICT, Republic of Korea
  3. Ajou University

向作者/读者索取更多资源

Intelligent neuromorphic tactile perception architecture requires the integration of pressure sensors, connecting cables, and artificial synapses, which poses serious challenges to complex device integration and overall energy consumption. Therefore, the development of self-adaptive, high performance and sophisticated artificial synapses with an uncomplicated fabrication process that can adjust its output with the tactile environment is essential. Here, we developed a proof-of-concept simple two-terminal, highly transparent, and flexible piezotronic artificial synapse that emulates environment-adaptable tactile perception. Specifically, all typical synaptic functions, such as excitation/depression, plasticity, and paired-pulse facilitation, are sensitive to the applied strain, thus providing artificial in-situ touch sensing. The observed effect is attributed to the dynamic charge trapping/detraining via strain-modulated band alignment and is qualitatively confirmed by Kelvin probe force microscopy measurements. The presented work provides new insights into simplifying the circuitry of neuromorphic tactile perception, resulting in a number of additional applications toward skin-attachable electronics, robotics, and prosthetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据