4.7 Article

Codelivery of doxorubicin-containing thermosensitive hydrogels incorporated with docetaxel-loaded mixed micelles enhances local cancer therapy

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 143, 期 -, 页码 260-270

出版社

ELSEVIER
DOI: 10.1016/j.colsurfb.2016.03.054

关键词

Docetaxel; Doxorubicin; Thermosensitive hydrogel; Micelles; Intratumoral; Co-delivery

资金

  1. National Science Council of the ROC [MOST103-2320-B-038-007]
  2. Technology Development Program for Academia, Ministry of Economic Affairs, ROC [102-EC-17-A-20-S1-200]

向作者/读者索取更多资源

Doxorubicin (DOX) thermosensitive hydrogels (TSHs) incorporated with docetaxel (DOC)-loaded mixed micelles were developed to co-deliver these two drugs through a TSH system, DH700kMF-13.5/M-DocLF, to improve local cancer therapy and reduce side effects. First, Pluronics-based DOC-loaded mixed micelles were developed and optimized. The optimal formulation designated as M-DocLF was composed of 1 mg/g docetaxel, 15 mg/g Pluronic F127 (PF127), and 45 mg/g Pluronic L121 (PL121). Rheological tests showed that DH700kMF-13.5/M-DocLF was an injectable flowing solution, which formed a nonflowing gel at body temperature. After intratumoral (IT) or peritumoral (PT) administration, DH700kMF-13.5/M-DocLF demonstrated efficient growth inhibition of CT-26 tumors in a Balb/c mice model. The tumor inhibitory rate after IT administration of DH700kMF-13.5/M-DocLF was 92.4%, followed by 85.8%, 75.6%, 62.9%, 50.6%, and 49.5% for DH700kMF-15, free DOX, F-13.5/M-DocLF, Tynen (DOC solution), and M-DocLF, respectively. Furthermore, PT administration of DH700kMF-13.5/M-DocLF resulted in similar efficacies. Pharmacokinetic and biodistribution studies showed that after subcutaneous (SC) and IT administration of the designated formulations, smaller amounts of DOX and DOC were absorbed from the local SC or tumor sites into systemic circulation, probably reducing their systemic toxicity. Tumor retention of DOX and DOC in biodistribution studies further revealed that co-delivery of these two drugs in DH700KMF-13.5/M-DocLF potentially enhanced the efficacy of tumor inhibition. In conclusion, our in situ injectable DOX and DOC TSH is a potential dual drug delivery system, which can enhance the efficacy of cancer chemotherapy with minimal side effects and reduced chemoresistance. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据