4.4 Article

Heating neutron stars with GeV dark matter

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2020)181

关键词

Beyond Standard Model; Chiral Lagrangians

资金

  1. U.S. NSF [PHY-1607611]
  2. U.S. DOE [de-sc0010504]

向作者/读者索取更多资源

An old neutron star (NS) may capture halo dark matter (DM) and get heated up by the deposited kinetic energy, thus behaving like a thermal DM detector with sensitivity to a wide range of DM masses and a variety of DM-quark interactions. Near future infrared telescopes will measure NS temperatures down to a few thousand Kelvin and probe NS heating by DM capture. We focus on GeV-mass Dirac fermion DM (which is beyond the reach of current DM direct detection experiments) in scenarios in which the DM capture rate can saturate the geometric limit. For concreteness, we study (1) a model that invokes dark decays of the neutron to explain the neutron lifetime anomaly, and (2) a framework of DM coupled to quarks through a vector current portal. In the neutron dark decay model a NS can have a substantial DM population, so that the DM capture rate can reach the geometric limit through DM self-interactions even if the DM-neutron scattering cross section is tiny. We find NS heating to have greater sensitivity than multipion signatures in large underground detectors for the neutron dark decay model, and sub-GeV gamma-ray signatures for the quark vector portal model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据