4.4 Article

A CMB Millikan experiment with cosmic axiverse strings

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2020)138

关键词

Strings and branes phenomenology

资金

  1. National Science Foundation [NSF PHY-1748958]
  2. GGI Institute for Theoretical Physics
  3. NSF [PHY-1620806, PHY-1915071, PHY-1914480]
  4. Chau Foundation
  5. Kavli Foundation
  6. Moore Foundation Award [8342]
  7. Maryland Center for Fundamental Physics (MCFP)
  8. Government of Canada through Industry Canada
  9. Province of Ontario through the Ministry of Economic Development Innovation

向作者/读者索取更多资源

We study axion strings of hyperlight axions coupled to photons. Hyperlight axions - axions lighter than Hubble at recombination - are a generic prediction of the string axiverse. These axions strings produce a distinct quantized polarization rotation of CMB photons which is O(alpha(em)). As the CMB light passes many strings, this polarization rotation converts E-modes to B-modes and adds up like a random walk. Using numerical simulations we show that the expected size of the final result is well within the reach of current and future CMB experiments through the measurement of correlations of CMB B-modes with E- and T-modes. The quantized polarization rotation angle is topological in nature and can be seen as a geometric phase. Its value depends only on the anomaly coefficient and is independent of other details such as the axion decay constant. Measurement of the anomaly coefficient by measuring this rotation will provide information about the UV theory, such as the quantization of electric charge and the value of the fundamental unit of charge. The presence of axion strings in the universe relies only on a phase transition in the early universe after inflation, after which the string network rapidly approaches an attractor scaling solution. If there are additional stable topological objects such as domain walls, axions as heavy as 10(-15) eV would be accessible. The existence of these strings could also be probed by measuring the relative polarization rotation angle between different images in gravitationally lensed quasar systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据