4.7 Article

Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 141, 期 -, 页码 374-381

出版社

ELSEVIER
DOI: 10.1016/j.colsurfb.2016.02.009

关键词

Chiral mesoporous silica nanoparticles; Carboxyl modification; pH-response; Doxorubicin hydrochloride

资金

  1. National Natural Science Foundation of China [81473161]

向作者/读者索取更多资源

In this study, dual functionalized mesoporous silica nanoparticle (Dual-MSN) with functions of carboxyl modification and chirality was successfully developed and its special contribution in delivering doxorubicin hydrochloride (DOX) in vitro was mainly studied. Characteristics of Dual-MSN and its application as DOX carrier were intensively explored by comparing with naked non-functionalized MSN (Naked MSN). The results indicated that both Naked MSN and Dual-MSN significantly controlled DOX release due to the release hindrance caused by mesopores. As expected, Dual-MSN exhibited obvious enhanced pH response because of its negative charges of carboxyl groups. DOX loaded Naked MSN and DOX loaded Dual-MSN presented better cytotoxicity than DOX due to carrier-mediated endocytosis and the favorable intercalation of DOX into DNA in the nuclei. The cytotoxicity of DOX loaded Dual-MSN was better than DOX loaded Naked MSN owing to its enhanced cellular uptake induced by chirality of Dual-MSN, demonstrating that double functions of Dual-MSN had unique advantages in improving antitumor effect of DOX towards MCF-7 cells and thus confirming its special contribution in DOX delivery. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据