4.7 Article

Development of antibacterial and high light transmittance bulk materials: Incorporation and sustained release of hydrophobic or hydrophilic antibiotics

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 141, 期 -, 页码 483-490

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2016.02.021

关键词

Antibacterial; Poly(dimethyl siloxane); Light transmittance; Sustained release; Gentamicin

资金

  1. National Natural Science Foundation of China [51403158, 81271703, 31570959]
  2. International Scientific & Technological Cooperation Projects [2012DFB30020]
  3. Science & Technology Program of Wenzhou [S20140005]
  4. Natural Science Foundation of Zhejiang Province [LY12H12005]

向作者/读者索取更多资源

Infection associated with medical devices is one of the most frequent complications of modern medical biomaterials. Bacteria have a strong ability to attach on solid surfaces, forming colonies and subsequently biofilms. In this work, a novel antibacterial bulk material was prepared through combining poly(dimethyl siloxane) (PDMS) with either hydrophobic or hydrophilic antibiotics (0.1-0.2 wt%). Scanning electron microscopy, water contact angle and UV-vis spectrophotometer were used to measure the changes of surface topography, wettability and optical transmission. For both gentamicin sulfate (GS) and triclosan (TCA), the optical transmission of the PDMS-GS and PDMS-TCA blend films was higher than 90%. Drug release studies showed initial rapid release and later sustained release of GS or TCA under aqueous physiological conditions. The blend films demonstrated excellent bactericidal and sufficient biofilm inhibition functions against Gram-positive bacteria (Staphylococcus aureus, S. aureus) measured by LIVE/DEAD bacterial viability kit staining method. Kirby-Bauer method showed that there was obvious zone of inhibition (7.5-12.5 mm). Cytocompatibility assessment against human lens epithelial cells (HLECs) revealed that the PDMS-GS blend films had good cytocompatibility. However, the PDMS-TCA blend films showed certain cytotoxicity against HLECs. The PDMS-0.2 wt% GS blend films were compared to native PDMS in the rabbit subcutaneous S. aureus infection model. The blend films yielded a significantly lower degree of infection than native PDMS at day 7. The achievement of the PDMS-drug bulk materials with high light transmittance, excellent bactericidal function and good cytocompatibility can potentially be widely used as bio-optical materials. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据