4.5 Article

Local Climate Zone Classification Scheme Can Also Indicate Local-Scale Urban Ventilation Performance: An Evidence-Based Study

期刊

ATMOSPHERE
卷 11, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/atmos11080776

关键词

urban ventilation performance; local climate zone; evidence-based analysis; downtown ventilation performance; relative mean wind speed

资金

  1. Key Program of Science Foundation of Liaoning Meteorological Office [202010, 201904]
  2. Basic Scientific & Research Business Expenses for Scientific and Scientific Institutions for Central Public Welfare [2018SYIAEMS2]
  3. Program of Natural Science Foundation of Liaoning Province [2020-MS-350]
  4. Scientific research project of Shenyang Institute of Atmospheric Environment, China Meteorological Administration [2020SYIAEJY12]

向作者/读者索取更多资源

Studies on urban ventilation indicate that urban ventilation performance is highly dependent on urban morphology. Some studies have linked local-scale urban ventilation performance with the local climate zone (LCZ) that is proposed for surface temperature studies. However, there is a lack of evidence-based studies showing LCZ ventilation performance and affirming the reliability of using the LCZ classification scheme to demonstrate local-scale urban ventilation performance. Therefore, this study aims to analyse LCZ ventilation performances in order to understand the suitability of using the LCZ classification scheme to indicate local-scale urban ventilation performance. This study was conducted in Shenyang, China, with wind information at 16 weather stations in 2018. The results indicate that the Shenyang weather station had an annual mean wind speed of 2.07 m/s, while the mean wind speed of the overall 16 stations was much lower, only 1.44 m/s in value. The mean wind speed at Shenyang weather station and the 16 stations varied with seasons, day and night and precipitation conditions. The spring diurnal mean wind was strong with the speeds of 3.56 m/s and 2.21 m/s at Shenyang weather station and the 16 stations, respectively. The wind speed (2.21 m/s at Shenyang weather station) under precipitation conditions was higher than that (1.75 m/s at Shenyang weather station) under no precipitation conditions. Downtown ventilation performance was weaker than the approaching wind background, where the relative mean wind speed in the downtown area was only 0.53, much less than 1.0. The downtown ventilation performance also varied with seasons, day and night and precipitation conditions, where spring diurnal downtown ventilation performance was the weakest and the winter nocturnal downtown ventilation performance was the strongest. Moreover, the annual mean wind speed of the 16 zones decreased from the sparse, open low-rise zones to the compact midrise zones, indicating the suitability of using LCZ classification scheme to indicate local-scale urban ventilation performance. The high spatial correlation coefficients under different seasons, day and night and precipitation conditions, ranging between 0.68 and 0.99, further affirmed that LCZ classification scheme is also suitable to indicate local-scale urban ventilation performance, despite without the consideration of street structure like precinct ventilation zone scheme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据