4.6 Article

The Link between Permeable Interlocking Concrete Pavement (PICP) Design and Nutrient Removal

期刊

WATER
卷 12, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/w12061714

关键词

permeable interlocking concrete pavement (PICP); nutrient removal from stormwater; sustainable drainage systems (SuDS)

向作者/读者索取更多资源

The construction of 'hard' impermeable surfaces in urban areas results in the increased flow of stormwater runoff and its associated pollutants into downstream receiving waters. Permeable Pavement Systems (PPS) can help mitigate this. The most common type of PPS in South Africa is permeable interlocking concrete pavement (PICP), but there is currently insufficient information available on the relative treatment performance of different PICP designs. This paper describes an investigation into the performance of ten different PICP systems constructed in the Civil Engineering Laboratory at the University of Cape Town for the treatment of various nutrients commonly found in stormwater runoff. It was found that removal efficiencies ranged from 27.5% to 78.7% for ammonia-nitrogen and from -37% to 11% for orthophosphate-phosphorus; whilst 4% to 20.2% more nitrite-nitrogen and 160% to 2580% more nitrate-nitrogen were simultaneously added. The presence of a geotextile resulted in higher ammonia-nitrogen removal efficiencies but also higher nitrate-nitrogen addition than those cells without-with small differences between various types. The cell with a permanently wet 'sump' had the highest nitrate-nitrogen addition of all. Lower pH results in higher nitrate-nitrogen concentrations, whilst the electrical conductivity strongly depends on the length of the periods between rainfall 'seasons', decreasing rapidly during wet periods but increasing during dry periods. Paver type also had a minor impact on nutrient removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据