4.7 Article

Geophysical and Sedimentological Investigations Integrate Remote-Sensing Data to Depict Geometry of Fluvial Sedimentary Bodies: An Example from Holocene Point-Bar Deposits of the Venetian Plain (Italy)

期刊

REMOTE SENSING
卷 12, 期 16, 页码 -

出版社

MDPI
DOI: 10.3390/rs12162568

关键词

electromagnetic induction; depth inversion; sedimentary processes

资金

  1. project HYDROSEM (Progetti di Eccellenza CARIPARO 2017, Cassa di Risparmio di Padova e Rovigo): Fluvial and tidal meanders of the Venetian-Po plain: From hydrodynamics to stratigraphy project

向作者/读者索取更多资源

Over the past few millennia, meandering fluvial channels drained coastal landscapes accumulating sedimentary successions that today are permeable pathways. Propagation of pollutants, agricultural exploitation and sand liquefaction are the main processes of environmental interest affecting these sedimentary bodies. The characterization of these bodies is thus of utmost general interest. In this study, we particularly highlight the contribution of noninvasive (remote and ground-based) investigation techniques, and the case study focuses on a late Holocene meander bend of the southern Venetian Plain (Northeast Italy). Electromagnetic induction (EMI) investigations, conducted with great care in terms of sonde stability and positioning, allowed the reconstruction of the electrical conductivity 3D structure of the shallow subsurface, revealing that the paleochannel ranges in depth between 0.8 and 5.4 m, and defines an almost 260 m-wide point bar. The electrical conductivity maps derived from EMI at different depths define an arcuate morphology indicating that bar accretion started from an already sinuous channel. Sedimentary cores ensure local ground-truth and help define the evolution of the channel bend. This paper shows that the combination of well-conceived and carefully performed inverted geophysical surveys, remote sensing and direct investigations provides evidence of the evolution of recent shallow sedimentary structures with unprecedented detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据