4.7 Article

Residual Dense Network Based on Channel-Spatial Attention for the Scene Classification of a High-Resolution Remote Sensing Image

期刊

REMOTE SENSING
卷 12, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/rs12111887

关键词

high-resolution remote sensing image; scene classification; residual dense network; channel-spatial attention

资金

  1. National Natural Science Foundation of China [61370189]
  2. Beijing Education Committee Cooperation Beijing Natural Science Foundation

向作者/读者索取更多资源

The scene classification of a remote sensing image has been widely used in various fields as an important task of understanding the content of a remote sensing image. Specially, a high-resolution remote sensing scene contains rich information and complex content. Considering that the scene content in a remote sensing image is very tight to the spatial relationship characteristics, how to design an effective feature extraction network directly decides the quality of classification by fully mining the spatial information in a high-resolution remote sensing image. In recent years, convolutional neural networks (CNNs) have achieved excellent performance in remote sensing image classification, especially the residual dense network (RDN) as one of the representative networks of CNN, which shows a stronger feature learning ability as it fully utilizes all the convolutional layer information. Therefore, we design an RDN based on channel-spatial attention for scene classification of a high-resolution remote sensing image. First, multi-layer convolutional features are fused with residual dense blocks. Then, a channel-spatial attention module is added to obtain more effective feature representation. Finally, softmax classifier is applied to classify the scene after adopting data augmentation strategy for meeting the training requirements of the network parameters. Five experiments are conducted on the UC Merced Land-Use Dataset (UCM) and Aerial Image Dataset (AID), and the competitive results demonstrate that our method can extract more effective features and is more conducive to classifying a scene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据