4.7 Article

3D Printing of Tunable Zero-Order Release Printlets

期刊

POLYMERS
卷 12, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/polym12081769

关键词

three dimensional printing; printing pharmaceuticals; personalized medicines; controlled release; 3D printed drug products; computer aided drug design and delivery; digital pharmaceutics; health and pharmaceutical sciences; gastrointestinal modified release drug delivery

资金

  1. Engineering and Physical Sciences Research Council (EPSRC), UK [EP/L01646X]

向作者/读者索取更多资源

Zero-order release formulations are designed to release a drug at a constant rate over a prolonged time, thus reducing systemic side effects and improving patience adherence to the therapy. Such formulations are traditionally complex to manufacture, requiring multiple steps. In this work, fused deposition modeling (FDM) 3D printing was explored to prepare on-demand printlets (3D printed tablets). The design includes a prolonged release core surrounded by an insoluble shell able to provide zero-order release profiles. The effect of drug loading (10, 25, and 40%w/wparacetamol) on the mechanical and physical properties of the hot melt extruded filaments and 3D printed formulations was evaluated. Two different shell 3D designs (6 mm and 8 mm diameter apertures) together with three different core infills (100, 50, and 25%) were prepared. The formulations showed a range of zero-order release profiles spanning 16 to 48 h. The work has shown that with simple formulation design modifications, it is possible to print extended release formulations with tunable, zero-order release kinetics. Moreover, by using different infill percentages, the dose contained in the printlet can be infinitely adjusted, providing an additive manufacturing route for personalizing medicines to a patient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据