4.7 Article

HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling

期刊

PLOS PATHOGENS
卷 16, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1008651

关键词

-

资金

  1. NHMRC [ID1023756]
  2. Rebecca L. Cooper Medical Research Foundation
  3. Australian Infectious Disease Research Excellence Award
  4. Australian Research Council Future Fellowship

向作者/读者索取更多资源

Author summary Asthma can start at any time in life, although most often begins in early childhood. Wheezy viral bronchiolitis is a major independent risk factor for subsequent asthma. However, key knowledge gaps exist in relation to the sequelae of severe viral bronchiolitis and the pathogenic processes that promote type-2 inflammation and airway wall remodelling, cardinal features of asthma. Our study addresses this gap by identifying high-mobility group box 1 as a pathogenic cytokine that contributes to group 2 innate lymphoid cell-induced airway smooth muscle growth. Type-2 immunity elicits tissue repair and homeostasis, however dysregulated type-2 responses cause aberrant tissue remodelling, as observed in asthma. Severe respiratory viral infections in infancy predispose to later asthma, however, the processes that mediate tissue damage-induced type-2 inflammation and the origins of airway remodelling remain ill-defined. Here, using a preclinical mouse model of viral bronchiolitis, we find that increased epithelial and mesenchymal high-mobility group box 1 (HMGB1) expression is associated with increased numbers of IL-13-producing type-2 innate lymphoid cell (ILC2s) and the expansion of the airway smooth muscle (ASM) layer. Anti-HMGB1 ablated lung ILC2 numbers and ASM growthin vivo, and inhibited ILC2-mediated ASM cell proliferation in a co-culture model. Furthermore, we identified that HMGB1/RAGE (receptor for advanced glycation endproducts) signalling mediates an ILC2-intrinsic IL-13 auto-amplification loop. In summary, therapeutic targeting of the HMGB1/RAGE signalling axis may act as a novel asthma preventative by dampening ILC2-mediated type-2 inflammation and associated ASM remodelling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据