4.5 Article

Chikungunya virus requires an intact microtubule network for efficient viral genome delivery

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 14, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0008469

关键词

-

资金

  1. ASPASIA grant from the Dutch Scientific Organization (NWO)
  2. Graduate School of Medical Sciences of the University of Groningen
  3. De Cock-Hadders Stichting of the University of Groningen

向作者/读者索取更多资源

Author summary Chikungunya virus (CHIKV) is an alphavirus that is transmitted to humans by infected mosquitoes. Disease symptoms can include fever, rash, myalgia, and long-lasting debilitating joint pains. Unfortunately, there is currently no licensed vaccine or antiviral treatment available to combat CHIKV. Understanding the virus:host interactions during the replication cycle of the virus is crucial for the development of effective antiviral therapies. In this study we elucidated the trafficking behavior of CHIKV particles early in infection. During cell entry, CHIKV virions require an intact microtubule network for efficient delivery of the viral genome into the host cell thereby increasing the chance to productively infect a cell. Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus, which has rapidly spread around the globe thereby causing millions of infections. CHIKV is an enveloped virus belonging to theTogaviridaefamily and enters its host cell primarily via clathrin-mediated endocytosis. Upon internalization, the endocytic vesicle containing the virus particle moves through the cell and delivers the virus to early endosomes where membrane fusion is observed. Thereafter, the nucleocapsid dissociates and the viral RNA is translated into proteins. In this study, we examined the importance of the microtubule network during the early steps of infection and dissected the intracellular trafficking behavior of CHIKV particles during cell entry. We observed two distinct CHIKV intracellular trafficking patterns prior to membrane hemifusion. Whereas half of the CHIKV virions remained static during cell entry and fused in the cell periphery, the other half showed fast-directed microtubule-dependent movement prior to delivery to Rab5-positive early endosomes and predominantly fused in the perinuclear region of the cell. Disruption of the microtubule network reduced the number of infected cells. At these conditions, membrane hemifusion activity was not affected yet fusion was restricted to the cell periphery. Furthermore, follow-up experiments revealed that disruption of the microtubule network impairs the delivery of the viral genome to the cell cytosol. We therefore hypothesize that microtubules may direct the particle to a cellular location that is beneficial for establishing infection or aids in nucleocapsid uncoating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据